

Statistics

Lecture 4

Feb 19-8:47 AM

class QZ 1

Consider the Sample below

2 4 6 6 8 9 10

1) $n = 7$ ✓

2) Range = $10 - 2 = 8$ ✓

3) Midrange = $\frac{10+2}{2} = 6$ ✓

4) Mode = 6 ✓

5) Median = 6 ✓

Jan 8-7:09 PM

class QZ 2

Complete the chart below:

class limits	class BNDRS	class F	Cum. F
5 - 13	4.5 - 13.5	3	3
14 - 22	13.5 - 22.5	12	15
23 - 31	22.5 - 31.5	5	20 $\leftarrow n=20$

then draw ogive.

CW=9

Jan 13-3:58 PM

Consider the Sample below

28 32 30 18 19

1) $n=15$

25 28 24 40 45

2) Make Stemplot

33 24 20 18 27

Data must be Sorted

Clear all lists **2nd** **+** **4: clear All lists** **Enter**

Reset all lists

STAT **Edit**
5: SetupEditor **Enter**

Store in L1

STAT **Edit**
1: Edit

	L1
1	28
2	32
3	30
4	18
5	19
6	25
7	28
8	24
9	40
10	45
11	33
12	24
13	20
14	18
15	27

quit & clear Screen

2nd **MODE** **clear**

Jan 13-4:44 PM

Sort L1, then view L1 to make STEM Plot

STAT Edit **L1**
2: SortA **2nd** **1** **Enter**

2nd **1** **Enter**

{18 18 19 20

→ → →
← ← ←

1 | 889
2 | 0445788
3 | 023
4 | 05

Jan 13-4:51 PM

find \bar{x} & s

STAT **→** **CALC**
1: 1-Var Stats

with Menu
List: L1
freq List: **clear**
No Menu
L1 **Enter**

5-Number Summary

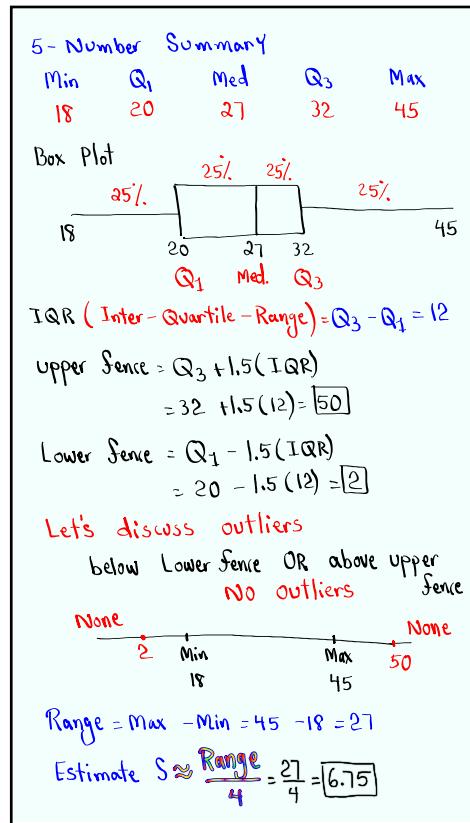
Min = 18
 $Q_1 = 20$
Med. = 27
 $Q_3 = 32$
Max = 45

Calculate

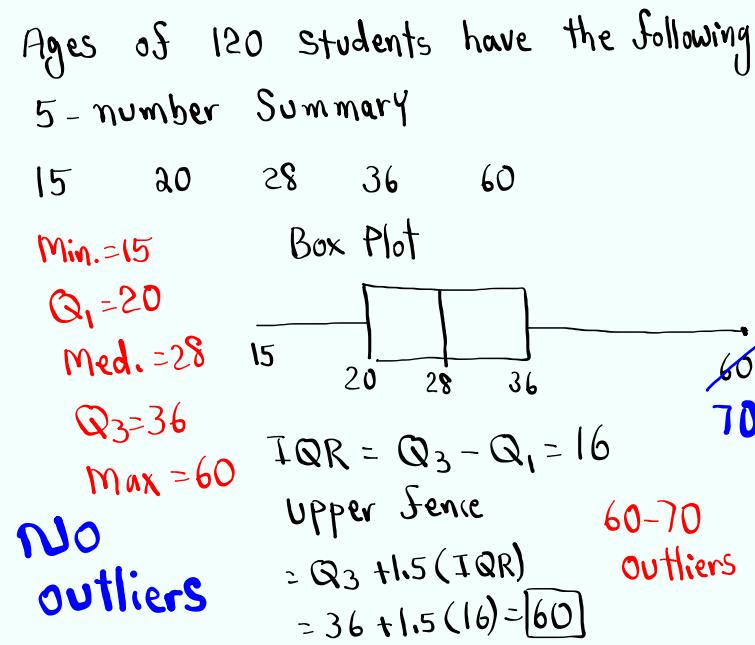
$\bar{x} = 27.4$
 $s = S_x = 7.836$
 $n = 15$

find s^2 in reduced fraction

VARS **5: Statistics**
3: Sx **x^2**
Math **1: >frac**
Enter


$s^2 = \frac{307}{5}$

$\bar{x} \approx 27, s \approx 8$


68% Range $\bar{x} \pm s \rightarrow 27 \pm 8$
 $\rightarrow 19$ to 35

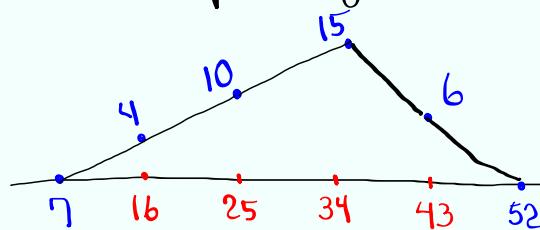
usual Range $\bar{x} \pm 2s = 27 \pm 2(8)$
95% Range $= 27 \pm 16$
 $\rightarrow 11$ to 43

Jan 13-4:55 PM

Jan 13-5:08 PM

Jan 13-5:18 PM

Complete the Chart below


Class limits	Class MP	Class F
12 - 20	16	4
21 - 29	25	10
30 - 38	34	15
39 - 47	43	6

1) 4 classes

2) $CW = 9$

$$3) n = 4 + 10 + 15 + 6 \\ = 35$$

Draw freq. Polygon

Jan 13-5:24 PM

find \bar{x} & s of the freq. table.

Clear all lists

Class MP \rightarrow L1

[STAT] \rightarrow CALC

Class F \rightarrow L2

[1:1-Var Stats]

$$\bar{x} = 30.914$$

with MENU

List: L1

NO MENU

$$S = S_x = 8.151$$

FreqList: L2

L1, L2

$$n = 35$$

[Calculate]

[Enter]

Find S^2 in reduced fraction

[VARS] [5: Statistics] [3: S_x] [x^2] [Math] [1: $\frac{\text{frac}}$]

$$S^2 = \frac{39528}{595}$$

[Enter]

Jan 13-5:30 PM

I randomly selected 40 exams, here are the Scores

5	5	8	9
6	0	3	7
7	8	8	9
8	2	3	6
9	6	6	8
10	8	8	9
	2	3	5
	5	7	7
	0	0	0
	0	0	0

1) $n = 40$

2) Range = $100 - 55 = 45$

3) Estimate S

$$S \approx \frac{\text{Range}}{4} = \frac{45}{4} = 11.25$$

4) Find P_{10}

$$L = \frac{10}{100} \cdot 40 = 4$$

$$P_{10} = \frac{4\text{th value} + \text{Next value}}{2}$$

$$= \frac{60 + 63}{2} = 61.5$$

5) Find P_{72}

$$L = \frac{72}{100} \cdot 40 = 28.8 \rightarrow L = 29$$

$$P_{72} = 29\text{th element}$$

$$= 89$$

Jan 13-5:37 PM

5	5	8	9
6	0	3	7
7	8	8	9
8	2	3	6
9	6	6	8
10	8	8	9
	2	3	5
	5	7	7
	0	0	0
	0	0	0

Find K Such that

$$P_K = 75$$

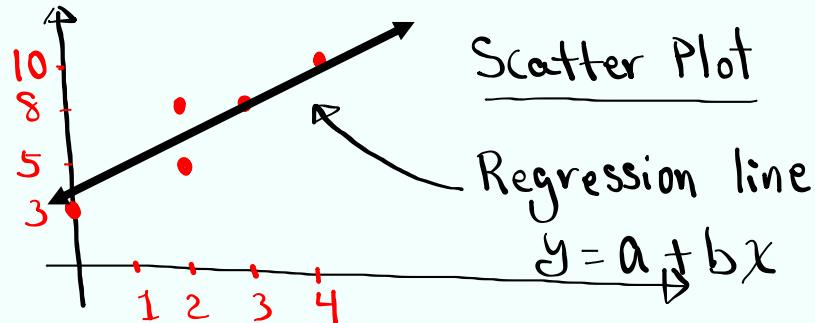
$$K = \frac{B}{n} \cdot 100$$

Round to whole %.

30% 70%

$$P_{30} = 75$$

$$K = \frac{12}{40} \cdot 100 = 30$$


$$P_{30} = 75$$

Jan 13-5:46 PM

Working with ordered-Pairs (x, y)

SG9

Plot $(0,3), (2,5), (2,8), (3,8), (4,10)$

Jan 13-6:07 PM

How to use TI

x	y
0	3
2	5
2	8
3	8
4	10

clear all lists

$x \rightarrow L1, y \rightarrow L2$

quit & clear Screen

STAT \rightarrow CALC

2:2-Var Stats

$$\sum x = 11$$

$$\sum x^2 = 33$$

$$n = 5$$

$$\sum y = 34$$

$$\sum y^2 = 262$$

$$\sum xy = 90$$

with Menu

x list: L1

y list: L2

Freq List: clear

Calculate

NO Menu

L1, L2

Enter

Jan 13-6:11 PM

How to find equation of the regression line $y = a + bx$:

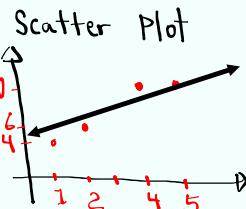
[STAT] \rightarrow CALC

8: LinReg(a+bx)
with menu
 $x_{list}: L1$
 $y_{list}: L2$

$y \approx 3 + 2x$
 $a = 3$
 $b = 1.727 \approx 2$
 $r^2 = .852$
 $r = .923$

Clear
Calculate

L1, L2
[enter]


If r & r^2 missing:

[2nd] [0] $\downarrow \downarrow \downarrow \dots \rightarrow$ DiagnosticOn
[Enter] [Enter]

Jan 13-6:17 PM

Complete the chart below

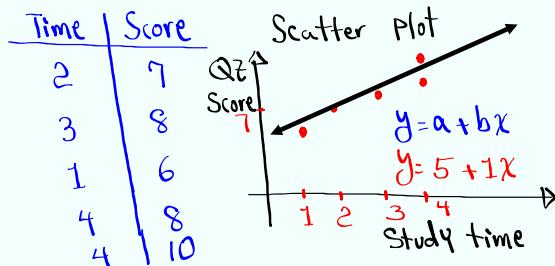
x	y	x^2	y^2	xy
1	4	1	16	4
2	6	4	36	12
4	10	16	100	40
5	10	25	100	50

$$x \rightarrow L1, y \rightarrow L2 \quad \sum x = 12 \quad \sum y = 30$$

$$\text{use 2-var stats} \quad \sum x^2 = 46 \quad \sum y^2 = 252$$

$$\text{now use } 8: \text{LinReg}(a+bx) \text{ to find} \quad n = 4 \quad \sum xy = 106$$

$$a = 2.7 \Rightarrow y = 2.7 + 1.6x$$


$$b = 1.6$$

$$r^2 = .948 \Rightarrow \text{Always in whole \%} \Rightarrow 95\%$$

$$r = .974$$

Jan 13-6:25 PM

I randomly selected 5 students, chart below show study time and Quiz Scores.

Study time $\rightarrow x \rightarrow L1$

Quiz Score $\rightarrow y \rightarrow L2$

use 2-Var Stats

$$\sum x = 14$$

$$\sum x^2 = 46$$

$$n = 5$$

$$\sum y = 39$$

$$\sum y^2 = 313$$

$$\sum xy = 116$$

option 8:

use LinReg(a+bx)

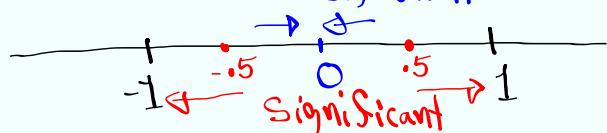
$$a = 5$$

$$b = 1$$

$$r^2 (7) \approx 77\%$$

$$r = .879$$

Jan 13-6:37 PM


$r \rightarrow$ Linear Correlation Coef.

$$-1 \leq r \leq 1$$

when r is close to 1 or -1,
the linear correlation is Significant.

when r is close to 0,
the linear correlation is not
significant.

Not significant

Jan 13-6:47 PM

what about r^2 ?

r^2 Coef. of determination

Always in whole %

r^2 tells us what % of y-values are explained by x-values.
from last example $r^2 = 77\%$.

77% of Quiz Scores are explained by study time.

23% are unexplained.

Jan 13-6:52 PM

How do we use these?

Two Branches in Statistics:

1) Descriptive

2) Inferential (Make predictions)

How to make predictions:

If r is Significant,
use the regression line

If r is not Significant,
use \bar{y} , $\bar{y} = \frac{\sum y}{n}$

Jan 13-6:57 PM

Using last example

Ryan Studies 4 hrs, Predict his Score.

1) Assume r is Significant

$$y = 5 + 1x$$

$$y = 5 + 1(4) = 9$$

2) Assume r is not Significant

use \bar{y}

$$\bar{y} = 7.8 \approx 8$$

[VARS]

[5: STATISTICS]

[5: \bar{y}]

[Enter]

Jan 13-7:00 PM

class QZ 3

Consider the Sample
below

20	23	18	25
30	25	19	24
32	28		

Find

$$1) \bar{x} = 24.4 \approx 24 \quad \left. \begin{array}{l} \text{Round} \\ \text{to} \\ \text{whole #} \end{array} \right\}$$

$$2) S = 4.648 \approx 5 \quad \left. \begin{array}{l} \text{Round} \\ \text{to} \\ \text{whole #} \end{array} \right\}$$

$$3) S^2 = \frac{108}{5} \quad \left. \begin{array}{l} \text{Reduced} \\ \text{Fraction} \end{array} \right\}$$

Jan 13-7:04 PM